25 research outputs found

    CeNiAsO: an antiferromagnetic dense Kondo lattice

    Full text link
    A cerium containing pnictide, CeNiAsO, crystallized in the ZrCuSiAs type structure, has been investigated by measuring transport and magnetic properties, as well as specific heat. We found that CeNiAsO is an antiferromagnetic dense Kondo lattice metallic compound with Kondo scale TKT_K \sim 15 K and shows an enhanced Sommerfeld coefficient of γ0\gamma_0 \sim 203 mJ/mol\cdotK2^{2}. While no superconductivity can been observed down to 30 mK, Ce ions exhibit two successive antiferromagnetic (AFM) transitions. We propose that the magnetic moment of Ce ion could align in the G type AFM order below the first transition at TN1T_{N1}=9.3 K, and it might be modified into the C type AFM order below a lower transition at TN2T_{N2}=7.3 K. Our results indicate that the 3d4fd-4f interlayer Kondo interactions play an important role in Ni-based Ce-containing pnictide.Comment: 13 pages, 5 figures, to appear in J. Phys.: Condens. Matte

    Active Fragment of Veronica ciliata

    Get PDF
    Excessive amounts of reactive oxygen species (ROS) in the body are a key factor in the development of hepatopathies such as hepatitis. The aim of this study was to assess the antioxidation effect in vitro and hepatoprotective activity of the active fragment of Veronica ciliata Fisch. (VCAF). Antioxidant assays (DPPH, superoxide, and hydroxyl radicals scavenging) were conducted, and hepatoprotective effects through the application of tert-butyl hydroperoxide- (t-BHP-) induced oxidative stress injury in HepG2 cells were evaluated. VCAF had high phenolic and flavonoid contents and strong antioxidant activity. From the perspective of hepatoprotection, VCAF exhibited a significant protective effect on t-BHP-induced HepG2 cell injury, as indicated by reductions in cytotoxicity and the levels of ROS, 8-hydroxydeoxyguanosine (8-OHdG), and protein carbonyls. Further study demonstrated that VCAF attenuated the apoptosis of t-BHP-treated HepG2 cells by suppressing the activation of caspase-3 and caspase-8. Moreover, it significantly decreased the levels of ALT and AST, increased the activities of acetyl cholinesterase (AChE), glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT), and increased total antioxidative capability (T-AOC). Collectively, we concluded that VCAF may be a considerable candidate for protecting against liver injury owing to its excellent antioxidant and antiapoptosis properties

    Optimizing Fresh Agricultural Product Distribution Paths Under Demand Uncertainty

    Get PDF
    Consumers' demand for fresh agricultural products (FAPs) and their quality requirements are increasing in the current agricultural-product consumption market. FAPs' unique perishability and short shelf-life features mean a high level of delivery efficiency is required to ensure their freshness and quality. However, consumers' demand for FAPs is contingent and geographically dispersed. Therefore, the conflicting relationship between the costs associated with the logistics distribution and the level of delivery quality is important to consider. In this paper, the authors consider a fresh agricultural-product distribution path planning problem with time windows (FAPDPPPTW). To address the FAPDPPPTW under demand uncertainty, a mixed-integer linear programming model based on robust optimization is proposed. Moreover, a particle swarm optimization algorithm combined with a variable neighborhood search is designed to solve the proposed mathematical model. The numerical experiment results show the robustness and fast convergence of the algorithm.</p

    Addition of alkynes and osmium carbynes towards functionalized dπ-pπ conjugated systems

    Get PDF
    碳-碳三键和碳-金属三键是两类高度不饱和的化学键。该工作发现了这两类三键之间的全新反应模式。利用该反应能把金属和有机π共轭体系有效结合,得到一类金属d轨道参与π共轭的全新大π共轭体系。化学化工学院夏海平教授课题组碳龙化学研究取得新进展,利用金属卡拜与炔烃的新反应,成功地合成了一类金属d轨道参与π共轭的全新共轭体系并在有机太阳能电池领域得到应用。该工作是在夏海平教授和南方科技大学何凤副教授共同指导下完成的。化学化工学院2016级iChEM博士生陈仕焰和南科大博士生刘龙珠为论文的共同第一作者。该工作充分体现了多学科协同创新研究优势:相关化合物合成、表征由陈仕焰、高翔、彭丽霞、张颖等完成;光电测试由刘龙珠完成;理论计算由陈仕焰、华煜晖完成。化学化工学院杨柳林副教授、谭元植教授等对研究工作给予了大力支持。【Abstract】The metal-carbon triple bonds and carbon-carbon triple bonds are both highly unsaturated bonds. As a result, their reactions tend to afford cycloaddition intermediates or products. Herein, we report a reaction of M≡C and C≡C bonds that affords acyclic addition products. These newly discovered reactions are highly efficient, regio- and stereospecific, with good functional group tolerance, and are robust under air at room temperature. The isotope labeling NMR experiments and theoretical calculations reveal the reaction mechanism. Employing these reactions, functionalized dπ-pπ conjugated systems can be easily constructed and modified. The resulting dπ-pπ conjugated systems were found to be good electron transport layer materials in organic solar cells, with power conversion efficiency up to 16.28% based on the PM6: Y6 non-fullerene system. This work provides a facile, efficient methodology for the preparation of dπ-pπ conjugated systems for use in functional materials.This research was supported by the National Natural Science Foundation of China (Nos. U1705254, 21931002, and 21975115), Guangdong Provincial Key Laboratory of Catalysis (No. 2020B121201002), Shenzhen Nobel Prize Scientists Laboratory Project (no.C17783101), and the National Key R&D Program of China (2017YFA0204902). We thank the SUSTech Core Research Facilities for the Holiba-UVISEL measurements. 研究工作得到了国家自然科学基金(U1705254、21931002、21975115),广东省催化化学重点实验室(No. 2020B121201002),国家重点研发计划(2017YFA0204902),及深圳诺贝尔奖科学家实验室(C17783101)等项目资助

    ceAF Ameliorates Diabetic Wound Healing by Alleviating Inflammation and Oxidative Stress via TLR4/NF-κB and Nrf2 Pathways

    No full text
    Background. With the rise in diabetes incidence, diabetic foot ulcers have become the most common clinically chronic refractory wounds. Persistent chronic inflammation is a typical feature of diabetic cutaneous wounds, and diabetic wound healing can be improved by alleviating inflammation and oxidative stress. Chick early amniotic fluids (ceAF) consist of native conglutinant substances with balanced amounts of growth factors, cytokines, and chemokines. However, whether ceAF modulates inflammation and oxidative stress and thus promotes diabetic wound healing remains unknown. Materials and Methods. RAW264.7 cells were categorized into four groups: negative control, LPS, LPS + ceAF, and ceAF. 10% of ceAF was selected to treat different groups of mice with a full-thickness skin defect wound. Then, RT-qPCR, western blot, immunofluorescence, and other assays were carried out to explore the effect of ceAF on wound healing and its molecular mechanism. Results. Topical administration of ceAF improved M2 macrophage polarization and inflammatory response in the wound tissues, thereby ameliorating delayed wound healing. Histological improvement could be observed in the grade of inflammation, collagen deposition, and neovascularization in wound edge tissues. ceAF also increased M2 macrophage-specific markers expression and exogenous ceAF suppressed LPS-induced cellular inflammatory response in vitro high glucose environment. Additionally, ceAF could activate TLR4/NF-κB and Nrf2 signal transductions to promote M2 macrophage polarization in vitro. Conclusions. In summary, ceAF downregulates inflammatory response, regulates M2 macrophage transition via TLR4/NF-κB and Nrf2 signaling pathways, and thus improves diabetic wound healing

    Polygonum criopolitanum Hance Expansion and Its Effects on Overwintering Goose Populations in the Poyang Lake Wetland

    No full text
    Since 2003, Poyang Lake has been showing obvious signs of degradation due to its changed &ldquo;river-lake&rdquo; relationship with the Yangtze River. The water level of Poyang Lake decreases continuously in autumn. The distribution elevation of wetland beach vegetation is constantly moving down and the distribution range is constantly expanding. The Polygonum criopolitanum community expansion at 9&ndash;12 m elevation (Yellow Sea elevation, the same below) has resulted in a significant decline in areas of mudflat and shallow water, and a significant change in habitat structure for overwintering migratory birds. Combined with field investigation, controlled experiments and statistical modeling were conducted to simulate Polygonum criopolitanum growth at 9&ndash;12 m elevation to establish its growth curve, effective growth time, growth rate, and fast-slow turning point. Polygonum criopolitanum growth rate was fastest in the 12 m elevation zone, and reached a maximum in only 22 days. After that, growth rate slowed down and tended to stagnate. Maximum growth rate of Polygonum criopolitanum in 10 and 11 m elevation zones occurred on the 31st and 46th days, respectively. At the inflection point, the Polygonum criopolitanum biomass accumulation rate was fast, then it gradually slowed down until it stopped. Polygonum criopolitanum growth and development at 9&ndash;11 m elevation was highly consistent with the arrival of overwintering migratory geese. Polygonum criopolitanum expansion at 9&ndash;11 m elevation created fine habitat conditions and rich food resources for populations of Soybean Goose, White Goose, Swan Goose and Cygnet, which was the fundamental reason for the formation of the Duchang Migratory Bird Reserve after 2003. This study is of scientific significance for studies of wetland vegetation community distribution and the promotion of reserve management

    <i>Polygonum criopolitanum</i> Hance Expansion and Its Effects on Overwintering Goose Populations in the Poyang Lake Wetland

    No full text
    Since 2003, Poyang Lake has been showing obvious signs of degradation due to its changed “river-lake” relationship with the Yangtze River. The water level of Poyang Lake decreases continuously in autumn. The distribution elevation of wetland beach vegetation is constantly moving down and the distribution range is constantly expanding. The Polygonum criopolitanum community expansion at 9–12 m elevation (Yellow Sea elevation, the same below) has resulted in a significant decline in areas of mudflat and shallow water, and a significant change in habitat structure for overwintering migratory birds. Combined with field investigation, controlled experiments and statistical modeling were conducted to simulate Polygonum criopolitanum growth at 9–12 m elevation to establish its growth curve, effective growth time, growth rate, and fast-slow turning point. Polygonum criopolitanum growth rate was fastest in the 12 m elevation zone, and reached a maximum in only 22 days. After that, growth rate slowed down and tended to stagnate. Maximum growth rate of Polygonum criopolitanum in 10 and 11 m elevation zones occurred on the 31st and 46th days, respectively. At the inflection point, the Polygonum criopolitanum biomass accumulation rate was fast, then it gradually slowed down until it stopped. Polygonum criopolitanum growth and development at 9–11 m elevation was highly consistent with the arrival of overwintering migratory geese. Polygonum criopolitanum expansion at 9–11 m elevation created fine habitat conditions and rich food resources for populations of Soybean Goose, White Goose, Swan Goose and Cygnet, which was the fundamental reason for the formation of the Duchang Migratory Bird Reserve after 2003. This study is of scientific significance for studies of wetland vegetation community distribution and the promotion of reserve management

    Thermal-aware correlated two-level scheduling of real-time tasks with reduced processor energy on heterogeneous MPSoCs

    No full text
    © 2017 Elsevier B.V. With the exponential increase in power density and the relentless scaling of transistors in VLSI circuits over the past decades, modern high-performance processors fall into a predicament of high energy consumption and elevated chip temperature. Such increased energy consumption and chip temperature could induce significant economic, ecological, and technical problems. Thus, energy-efficient task scheduling with thermal consideration has become a pressing research issue in sustainable computing systems, especially for battery-powered real-time embedded systems with limited cooling techniques. This paper tackles the above challenge through scheduling tasks leveraging correlated optimizations at two different scales. Precisely, a two-level thermal-aware energy-efficient scheduling algorithm for real-time tasks on DVFS-enabled heterogeneous MPSoC systems is developed considering the constraints of task deadlines, task precedences, and chip peak temperature limit. At the processor level, a multi-processor model supporting dynamic voltage/frequency scaling is transformed to a virtual multi-processor model supporting only one fixed frequency level. At the core level, real-time tasks are assigned to individual cores of the virtual processor under the constraints of task precedence and peak temperature limit. Through nicely interleaving optimizations at both levels, high quality task scheduling solutions can be computed efficiently. Extensive simulations of synthetic real-time tasks and real-life benchmarks are performed to validate the proposed algorithm. Experimental results demonstrate the effectiveness of the proposed algorithm as compared to the benchmarking schemes

    Analysis of the Registration Information on Interventions of Acupuncture and Moxibustion Trials in the International Clinical Trials Registry Platform

    No full text
    Purpose. To analyze and compare the clinical registration information about acupuncture and moxibustion for intervention characteristics. Methods. Clinical trials from the International Clinical Trials Registry Platform of the World Health Organization in acupuncture and moxibustion were comprehensively collected from 2013 to 2015; data were independently screened and extracted by two retrievers, and relevant data involving either basic descriptions or intervention characteristics were analyzed. Results. 425 acupuncture and moxibustion registered clinical trials were included; 88.00% (374/425) were designed as controlled studies, among which 38.59% (164/425) had sham acupuncture as the control group. The most common diseases were pain-related at approximately 19.29% (82/425) of trials. Reports on the intervention information in these acupuncture and moxibustion clinical studies were not sufficiently presented; these reports included the reporting of names of points (39.8%), the method of needle stimulation (32.5%), needle type (29.6%), needle retention time (34.1%), the number of treatment sessions (22.4%), and the frequency and duration of treatment sessions (38.1%). Conclusion. The registration information for the clinical trials of acupuncture and moxibustion was quite low according to this investigational study. Steps should be taken to improve the quality of acupuncture and moxibustion registration information
    corecore